Skip to main content

3 Ways Sales Professionals Harness Machine Learning Capabilities to Work Less and Sale Better

Sales activities in many organizations are manual and inefficient. Sales went into the first call or meeting with little knowledge of the client or why the client contacted them in the first place. Their pitches are not relevant so they lose the client’s attention quickly. 

Machine learning can help sales in 3 ways:  

Improve Lead Quality

One of the most direct and rewarding way sales team can leverage on data is lead optimization. CRM systems provides advanced lead scoring functionalities which rates a prospect on their action (if it is a Saas business, how they interact on the company website and if a manual sales process, how consumers react); background data (e.g. company size; revenue; consumer demographics) and many other factors. 

Per Harald Borgen in his article “Boosting Sales With Machine Learning” explain how they use natural language processing to qualify leads. It uses FullContact API to read description of millions of companies from which it got a full list of company information data (FullContact only accept URL as query input so they have to Google to find the right URL first). Good data were taken from the company’s existing client list and used to train the machine to identify patterns of a good lead. 




Prepare For First Meeting

First impression is critical. Most of the articles talked about how important it is to understand the client and the client business, and the client’s competitors and peers. This is a rather manual, time-consuming task at the moment, Clients will find you trustworthy and friendly is you can show you know a little bit about your business. 
Moreover, information on client search can also be helpful if client reached out to you from online. Say, if the client has navigated to a specific product information page, then s/he may be interested to understand more on that particular product; if the client download a business case or white paper from your website, then the sales can use business cases focussing on those sectors.              

Improve Pricing Outcome

Rakow and Sora talked about how to apply Machine Learning in Motor Insurance Pricing. With new data sources, auto insurers are able to relax some assumption as compared to traditional model and can test different models at the same time. It also means reduction in the number of consumer inputs needed to give a quotation which, for the sales team in the organization, means shorter sales cycle and better sales outcome.

One potential use case comes from the auto insurance industry. New innovation such as electric vehicles, self-driving cars have changed the ways we interact with our cars. But the insurance pricing models aligned with these new technologies are not in place. Virginia Tech study shows self-driving cars are safer than human-driven vehicles at all severity levels. So does having a self-driving car give the owners lower insurance fee? Or actually does how often the car is on the road, which country the vehicle is used also play a role in the pricing? All these new data sources help insurances to improve their pricing model.
                                              

Machine learning is not there to replace people, but to empower people. It is up to you and your organization to say if you want to embrace it for the upside and do your best to avoid the downside. 

But one thing I bet you will for sure find useful, it can be used to detect your drinking level, to be specific, it helps you prevent sending tweets you wish was “un-tweeted” if you had not been so drunk.  So you can rest assured the next time  you are as drunk as fiddler that your clients will not become ex-client after you wake up the next morning.

Reference:

Lead Score O[ptimization Machine Learninghttps://www.linkedin.com/pulse/lead-score-optimization-machine-learning-matt-barnes-mba


Application of Machine Learning in Motor Insurance Pricing
https://www.actuaries.org.uk/documents/a1-application-machine-learning-motor-insurance-pricing.


Automated vehicle Crash Rate Comparison Using Naturalistic Datahttp://www.vtti.vt.edu/featured/?p=422


Analyzing Competitor Tariffs With Machine Learninghttp://uk.milliman.com/insight/2015/Analysing-competitor-tariffs-with-machine-learning/

Popular posts from this blog

4 Techniques to Make Your UX Review Meetings Successful

As a product manager, I often need to sit down with the executive management team to get their feedback on the new designs. It can be a frustrating process and many times I found that I cannot get things down in the time I am allowed to have.
Nevertheless, not having the sign-off from management is terrible for the team, we face high risk of having to re-work (yes, we always need to re-work, but it feels better if it is an improvement), schedule get delayed etc.
Over my 200+ review meetings, i've came to understand the reasons and learnt skills on how to stir the meeting towards an efficient completion, and I want to share them with you.
There are 4 key reasons of an unsuccessful product review meeting: 
1. Audience Lack the Background Knowledge: especially when introducing a new function, executives don’t know what they are looking at, or how the end users will be using such function, you may have sent the presentation before and again in the meeting invite, it doesn’t matter;

2. T…

What Changes will Machines Bring to us - As Employees

Machine learning to the employment has been a topic in debate. Darrell West, in his paper titled "What happens if robots take the jobs? The impact of emerging technologies on employment and public policy” suggested a list of actions government should take to ensure people whose job has been replaced by machines can live a decent live. The general sentiment seems to suggest a turbulent era as work force transform.

Growing up in China during the time of State owned enterprise reform, I had real experience living through the time of large group of people being laid off because the jobs were suddenly gone. My parent’s generation had to learn new skills for a completely new industry at their 40s and 50s. Few of them made it and even became millionaire, many of them didn’t and the family suffered a lot. I followed the news of Detroit Car manufacturing industry lapse and it shows familiar traits. The fact is, jobs come and go all the time, employee as a group will constantly adapt while …

21 Tops on How to Write a Successful Blog

Hubspot and General Assembly came together to offer a 10 week planner for successful blog. The type of blog discussed in this plan are corporate blogs used to bring people to the site and explore what the company is doing, potentially generate a lead.




Identify Your Target Persona: talk to sales team and research contract dataStart Building Evergreen Content: start with evergreen contents that stay relevant though time; do keyword search to see what people are searchingChoose the Right Content Management Tool: a good tool is easy to use and allow users to track metrics such as conversion rate, page view, and where traffic come fromDesign Your Blog: consistent layout; Focus on Your Content Strategy: basically it is depending on what you wantSet Subscriber Path: there needs to be a workflow for emailing the subscriber, a subscription form and an unsubscribe form. Hubspot is towards the "don’t email your subscribers too often” group while I also heard UI Breakfast Jane Portman talked …